Global & USA Cancer Immunotherapy Market Analysis to 2020

Published: 2016-JUL-04
Pages: 317
Format: PDF
Price: 3800 USD (Single User License)

Description
GLOBAL & USA CANCER IMMUNOTHERAPY MARKET ANALYSIS TO 2020:

Antibody Drug Conjugates (ADCs), Bispecific Monoclonal Antibodies, Cancer Vaccines, Cytokines, Interferons, Chimeric Antigen Receptor (CAR) T-Cell Therapy, PD-1/PD-L1 inhibitors, Dendritic Cells, Checkpoint Inhibitors, Adopted Cell Therapy (ACT) & IDO Inhibitors

This report provides a comprehensive overview of the size of cancer immunotherapy market, the segmentation of the market, key players and the vast potential of therapies that are in clinical trials. Oncologic therapeutics cannot cure cancer and yet in 2014, the overall market for cancer therapeutics stood at about $84.3 billion. Any drug that can provide a reasonable survival of more than five years for cancer patients can achieve a blockbuster status. Within cancer therapeutics, immunotherapeutic drugs have gained worldwide acceptance, because they are targeted drugs targeting only cancer cells. Today, cancer immunotherapy drugs have captured nearly 50% of the overall oncology drugs market, generating about $41.0 billion in 2014 alone. This report describes the evolution of such a huge market in 20 chapters supported by over 180 tables and figures in 317 pages.

Key Questions Answered in this Report

• What is the global market for cancer immunotherapeutics by product class such as MAbs, vaccines and non-specific immunotherapies, through 2020?
• What is the global market for cancer immunotherapeutics by geography, through 2020?
• What is the global market for cancer immunotherapeutics by indication, through 2020?
• What is the global market for MAbs by type such as naked MAbs and ADCs, through 2020?
• What are the market values for Herceptin, Avastin, Erbitux, Yervoy, Mabthera, Adectris, and Keytruda?
• What is the global market for cancer vaccines?
• What is the global market for cytokines in cancer immunotherapy?
• The projected market values for Nivolumab, RG7446, DCVax-L, MEDI4736?
• What immunotherapies were approved between 1986 and 2016?
• What monoclonal antibodies (MAbs) were approved by the FDA to treat different types of cancers?
• What are naked MAbs and how many of them have been approved by the FDA?
• What are antibody-drug conjugates (ADCs) and how many of them are available in the market?
• What are the common cytotoxic “wareheads” used in ADCs?
• What are the important clinical assets in ADCs?
• How many bispecific MAbs are in late-stage development?
• What are the common side effects of MAbs in cancer immunotherapy?
• What are cancer vaccines and how many of them have been licensed to be marketed?
• How many cytokines have been approved for being used in cancer immunotherapy?
• What are the major checkpoint inhibitors in clinical development?
• What is the current status of anti-PD-1 drugs, dendritic cell therapies, T-cell therapies and cancer vaccines?
• What are the most valuable R&D projects in cancer immunotherapy and what would be their approximate sales revenues in 2020?
• Number of melanoma drugs approved between 1998 and 2016?
• Number of lung cancer drugs approved between 1998 and 2016?
• Number of brain cancer drugs approved between 1998 and 2016?
• What is CAR T Therapy?
What are the main challenges associated with CAR T therapy?

When will the first CAR T therapeutics be approved?

What are the current regulations for immunotherapies in USA, Europe & Japan?

What are the main manufacturing steps in CAR T therapy?

What challenges lie ahead for CAR T production?

The report is supported by over 180 tables & figures over 317 pages. This report is presented as follows:

The global market for cancer immunotherapy by the following sub-categories are presented:

- By Segment (Monoclonal Antibodies, Cancer Vaccines, Non-Specific Therapies, Checkpoint Inhibitors)
- By Product Segment (Antibody Drug Conjugates (ADCs), Bispecific Monoclonal Antibodies, Cytokines, Interferons, Chimeric Antigen Receptor (CAR) T-Cell Therapy, PD-1/PD-L1 inhibitors, Dendritic Cells, Adopted Cell Therapy (ACT) & IDO Inhibitors)
- By Company (e.g. Amgen, Merck, Eli Lilly, GlaxoSmithKline, Janssen, Genentech, Roche, Bristol Myers Squibb)

A comprehensive account of company product portfolios are provided for 79 Cancer Immunotherapy pharma and biotech companies including:

- Amgen Inc.
- Biogen Idec Inc.
- Bristol-Myers Squibb Co.
- Cellectis
- Cellerant Therapeutics Inc.
- CellDex Therapeutics
- Eli Lilly and Co.
- EMD Serono Inc.
- Genentech Inc.
- Genmab AS
- GlaxoSmithKline
- ImmunoGen Inc.
- Immunomedics Inc.
- Janssen Biotech Inc.
- Juno Therapeutics Inc.
- Merck & Co., Inc.
- Oxford BioTherapeutics Ltd.
- Progenics Pharmaceuticals Inc.
- Roche Holdings Inc.
- Seattle Genetics Inc.
- Sorrento Therapeutics Inc.
- Kite Pharma
- Novartis

Executive Summary

Prior to the launching of Yervoy, the five-year survival rate for patients with early stage melanoma was 98%; but the five-year survival rate for late-stage melanoma was just 16%. Yervoy has been reported to have a survival rate of 25% when tested alone. When tested as part of a combination therapy treatment with Bristol's nivolumab, the two-year survival rates rose to 88% for patients with late-stage cancer. Increase in patient survival rates brought about by cancer immunotherapy treatment is similar to that seen when bone marrow transplantation changed our conception on how blood cancer was treated.
Therefore, it is no wonder that in 2013, most science journals hailed cancer immunotherapy as the breakthrough treatment of the year. Conceivably, what makes advancements in cancer immunotherapy research even more dramatic is the fact it has the potential to treat a wide range of tumor types. If the present trends continue, cancer immunotherapy drugs will have a market value of about $80 billion in 2020. A single drug, Bristol-Myers Squibb’s Yervoy, for example has earned revenues of about $960 million in 2013 and it is expected to have a market value of $1,775.2 million in 2020.

Recently, a new class of anti-cancer agents called checkpoint inhibitors has hit the market. In the first week of September 2014, Bristol-Myers Squibb and Ono Pharmaceutical launched their PD-1 (programmed cell death-1) inhibitor Opdivo (nivolumab) in Japan for unresectable melanoma. Later, Merck got FDA clearance for PD-1 inhibitor Keytruda (pembrolizumab) for unresectable melanoma following the treatment with Yervoy (ipilimumab).

In the U.S., Opdivo was granted approval in 2015 for renal carcinoma, non-small-cell lung cancer (NSCLC) and previously treated advanced melanoma. In May 2016, Opdivo was granted FDA approval for the treatment of patients with classical Hodgkin lymphoma (cHL) that has relapsed or progressed after autologous hematopoietic stem cell transplantation (HSCT).

Keytruda (pembrolizumab), another PD-1 inhibitor was granted FDA approval in October 2015 for advanced NSCLC, and was granted EMA approval for melanoma in July 2015. Both Keytruda and Opdivo have six figure price tags in the market. Keytruda will cost $12,500 a month and Merck says the median usage is 6.2 months, which works out to a $77,500 price tag, or $150,000 on annualized basis. In Japan, Opdivo costs about $143,000 a patient. Industry experts have predicted that Keytruda and Opdivo will generate sales revenues of $2.9 billion and $4.3 billion respectively in 2019.

Another area of anticancer therapy is cancer vaccines. There are two different types of cancer vaccines: prophylactic vaccines to prevent cancers from occurring, and therapeutic vaccines to treat pre-existing cancers. A few prophylactic vaccines for viral-associated cancers have had significant success, such as the human papillomavirus vaccine that helps prevent cervical cancer. On the other hand, therapeutic vaccines have proven much more elusive and a string of failures bred significant skepticism. Ultimately, in 2010, perseverance paid off and the first therapeutic vaccine sipuleucel-T for the treatment of metastatic prostate cancer was approved by the FDA: In spite of its financial restructuring efforts, Dendreon earned $303.8 million in 2014 which was $20.1 million more than its 2013 sales revenue.

The CAR-T industry is addressing unmet needs in specific relapsed cancers, however does early clinical trial data support a blockbuster status for this upcoming therapy? Some patients do indeed show long term activity and high remission rates, but there is a large proportion of patients with toxicities such as cytokine release syndrome and neurotoxicity. The main players within the CAR-T market are Juno Therapeutics, Kite Pharma, Novartis and Cellectis. The market is moving ahead, backed by years of R&D, from both academia and industry, investors capitol and small clinical studies. From 2017, Kelly Scientific forecasts that CAR T therapy will become more streamlined, with faster manufacturing times as advances in technologies take hold and clinical trials provide more robust evidence that this immunotherapy is robust. These factors, plus strategies to reduce adverse reactions and toxicities and larger players like Novartis taking stage will push CAR T therapy ahead. However, recent deaths in the Juno ROCKET trial are creating questions amongst investors. How will the CAR T space influence the total immunotherapy industry going forward? This comprehensive report scrutinizes the total market and provides cutting-edge insights and analysis.
2.2 Types of Cancer Immunotherapy 26

2.3 Monoclonal Antibodies (Mabs) to Treat Cancer 27

2.3.1 Most Frequently Targeted Antigens by MAbs 27

2.4 Types of Monoclonal Antibodies (Mabs) 29

2.4.1 Naked MAbs 29

2.4.2 Conjugated Monoclonal Antibodies 30

2.4.2.1 Components of an Antibody Drug Conjugate (ADC) 30

2.4.2.2 Mechanism of Action of Antibody Drug Conjugate (ADC) 31

2.4.2.3 The Cytotoxic Wareheads used in ADCs 31

2.4.2.4 Successful Cytotoxin Wareheads 32

2.4.2.5 Developmental Timeline of ADCs 33

2.4.2.6 Target Antigens for ADCs in Preclinical and Clinical Development 34

2.4.2.7 Important Clinical Assets in ADCs 34

2.4.3 Bispecific Monoclonal Antibodies 36

2.4.3.1 Technology Platforms for the Production of Bispecific MAbs 37

2.4.4 Safety and Side Effects of MAbs in Cancer Immunotherapy 37

2.5 Cancer Vaccines 38

2.5.1 Cancer Vaccines in Development 39

2.6 Non-Specific Cancer Immunotherapies and Adjuvants 42

2.6.1 Cytokines 42

2.6.2 Interferon (IFN) 42

2.7 New Frontiers in Cancer Immunotherapy Research 43

2.7.1 Drugs for Targeting Immune Checkpoints 43

2.7.1.1 Cytotoxic T-Lymphocyte-Associated Protein-4 (CTLA-4) 43

2.7.1.2 Programmed Death 1 (PD-1) and Programmed Death Ligand 1 (PD-L1) 43

2.7.1.3 Major Checkpoint Inhibitors in Clinical Development 43

2.7.2 Chimeric Antigen Receptor (CAR) T Cell Therapy 44

2.7.3 Tumor-Infiltrating Lymphocytes (TILs) and Interleukin-2 (IL-2) 44

2.8 Cancer Immunotherapy: Timeline of Progress 44

3.0 Current Status of Cancer Immunotherapy: An Overview 48

3.1 Programmed Death (PD-1) Inhibitors 48

3.1.1 Important Events and Advantages for Nivolumab in Melanoma Indication 49

3.1.2 Important Events and Advantages for Nivolumab in Non-Small Cell Lung Cancer 50

3.1.3 Important Events and Advantages for Nivolumab in Renal Cell Cancer 50

3.1.4 Nivolumab Studies for Melanoma 50
3.1.5 Nivolumab Studies for Non-Small Cell Lung Cancer (NSCLC) 51
3.1.6 Nivolumab Studies for Renal Cell Cancer (RCC) 51
3.2 MK-3475 (Pembrolizumab) 51
3.2.1 Important Events and Advantages for MK-3475 in Melanoma 51
3.2.2 Important Events and Advantages for MK-3475 in NSCLC 52
3.2.3 Important Events for MK-3475 in RCC 52
3.3 RG7446 from Roche 52
3.3.1 Important Events for RG7446 in Melanoma 53
3.3.2 Important Events and Advantages for RG7446 in NSCLC 53
3.3.3 Important Event for RG7446 in RCC 54
3.3.4 RG7446 Studies in NSCLC 54
3.3.5 RG7446 Studies in RCC 54
3.3.6 RG7446 Study in RCC 55
3.4 Pidilizumab from CureTech 56
3.5 An Overview of Anti-PD-1 Clinical Development 56
3.5.1 Other Checkpoint Inhibitors in Development 58
3.6 Studies with Yervoy (Ipilimumab) 58
3.7 Studies with Tremelimumab 60
3.8 KAHR-102 60
3.9 TIM3 Antibody 60
3.10 BMS-989016 60
3.11 ImmuTune IMP701 and ImmuFact IMP321 61
3.12 Dendritic Cell Therapies 61
3.12.1 Provenge (Sipuleucel-T) 62
3.12.2 AGS-003 from Argos Therapeutics 62
3.12.3 DCP-001 from DCPrime 63
3.12.4 DC-Vax from Northwest Biotherapeutics 63
3.13 Chimeric Antigen Receptor T-Cells (CAR-T) Therapies 63
3.13.1 CLT109 63
3.13.2 Chimeric Antigen Receptors (CAR) Program by Juno 64
3.13.3 Chimeric Antigen Receptor (CAR) T-Cell Program by Bluebird Bio 64
3.13.4 UCART19 from Cellectis 64
3.13.5 Chimeric Immune Receptor (CIR) T-Cells from Abramson Cancer Center 65
3.13.6 CD19 eACT CAR-T Therapy from Kite Pharma 65
3.13.7 Autologous CAR-T Program for Breast Cancer from Adaptimmune 65

http://www.biomarketgroup.com
3.14 Cancer Vaccines 65

3.14.1 HyperAcute 65
3.14.2 MAGE-A3 Antigen-Specific Cancer Immunotherapeutic 67
3.14.3 ADXS-HPV 67
3.14.4 IDO Inhibitors 68
3.14.5 Indoximod and NLG-919 (INCY) 68
3.14.6 INCB24360 (INCY) 68
3.14.7 deCellVax (BMSN) 68
3.15 Miscellaneous Immunotherapies 69
3.15.1 Contego (Lion Biotechnologies) 69
3.15.2 TG4010 (Transgene) 69
3.16 Most Valuable R&D Projects in Cancer Immunotherapy 69
3.16.1 Nivolumab (Opdivo) 70
3.16.2 MK-3475 70
3.16.3 RG7446 70
3.16.4 Palbociclib 71
3.16.5 DCVax-L 71
3.16.6 MEDI4736 71
4.0 Challenges in Cancer Medicine Research: An Overview 64
4.1 Years of Failures and Emerging Successes in Melanoma Medicine Research 64
4.1.1 Future Outlook for Melanoma Drugs 73
4.2 A New Era for Lung Cancer Medicines 74
4.2.1 Progresses Made in Lung Cancer Medicine Research 74
4.2.2 Successes and Failures in Lung Cancer Medicine Development 75
4.2.3 Future Outlook for Lung Cancer Medicines 75
4.3 Ray of Hope for Brain Cancer Patients 76
4.3.1 Progress made for Brain Cancer Treatment in Recent Years 76
4.3.2 Successes and Failures in Brain Cancer Drug Development 76
5.0 Cancer Immunotherapeutic Products: An Overview 78
5.1 I-Labelled Tositumomab (Bexxar) 78
5.2 Y-Labelled Ibritumomab (Zevalin) 78
5.3 Alemtuzumab (Campath) 79
5.4 Adotrastuzumab Emtansine (Kadcyla) 79
5.5 Bacillus Calmette-Guerin (BCG) 80
5.6 Bevacizumab (Avastin) 80
5.7 Brentuximab Vedotin (Adcetris) 80
5.8 Cetuximab (Erbitux) 81
5.9 Cervarix 81
5.10 Denileukin Diftitox (Ontak) 82
5.11 Gardasil 82
5.12 Gemtuzumab (Mylotarg) 82
5.13 Hepatitis B Vaccine 82
5.14 Interferon Alfa (IFN-alfa) 82
5.15 Interleukin-2 (IL-2) 83
5.16 Ipilimumab (Yervoy) 83
5.17 Ofatumumab (Arzerra) 83
5.18 Panitumumab (Vectibix) 83
5.19 Pembrolizumab (Keytruda) 83
5.20 Rituximab (Mabthera) 84
5.21 Sargramostim (Leukine) 84
5.22 Sipuleucel-T (Provenge) 84
5.23 Trastuzumab (Herceptin) 84

6.0 Available Immunotherapies for Cancer by Disease Type: An Overview 86
6.1 Melanoma Skin Cancer and Immunotherapy 87
6.1.1 Ipilimumab (Yervoy) for Advanced Melanoma 87
6.1.2 PD-1 Inhibitors (Keytruda and Opdivo) for Advanced Melanoma 87
6.1.3 Cytokines for Advanced Melanoma 87
6.1.4 Interferon Alfa as Adjuvant Therapy for Melanoma 87
6.1.5 Bacille Calmette-Guerin (BCG) Vaccine for Melanoma 88
6.1.6 Imiquimod (zyclara) Cream for Melanoma 88
6.2 Breast Cancer and Immunotherapy 88
6.2.1 Promising Therapeutic Vaccine Product Candidates for Breast Cancer 88
6.2.2 Promising Checkpoint Inhibiting Product Candidates for Breast Cancer 89
6.2.3 Promising Adoptive T Cell Therapy Product Candidates for Breast Cancer 89
6.2.4 Promising Antibody Product Candidates for Breast Cancer 89
6.3 Immunotherapy for Prostate Cancer 89
6.3.1 Therapeutic Vaccines for Prostate Cancer 90
6.3.2 Checkpoint Inhibitors for Prostate Cancer 91
6.3.3 Adoptive Cell Therapy for Prostate Cancer 92
6.4 Immunotherapy for Lung Cancer 92

6.4.1 Monoclonal Antibodies for Lung Cancer 92

6.4.1.1 Promising MAb Product Candidates for Lung Cancer 92

6.4.1.2 Checkpoint Inhibitors for Lung Cancer 93

6.4.1.3 Therapeutic Vaccines for Lung Cancer 95

6.4.1.4 Promising Adoptive T Cell Transfer Product Candidates for Lung Cancer 95

6.5 Immunotherapy for Colorectal Cancer 96

6.5.1 Promising Monoclonal Antibody Product Candidates for Colorectal Cancer 96

6.5.2 Trials Using Checkpoint Inhibitors and Immune Modulators for Colorectal Cancer 97

6.5.3 Clinical Trials for Vaccines Indicated for Colorectal Cancer 97

6.5.4 Adoptive Cell Therapy for Colorectal Cancer 98

6.5.5 Oncolytic Virus Therapy for Colorectal Cancer 98

6.5.6 Adjuvant Immunotherapy for Colorectal Cancer 98

6.5.7 Cytokines for Colorectal Cancer 98

6.6 Immunotherapies in Development for Lymphoma 99

6.6.1 Therapeutic Vaccines in Development for Lymphoma 99

6.6.2 Checkpoint Inhibitors for Lymphoma 99

6.6.3 Adoptive T Cell Transfer for Lymphoma 99

6.6.4 Monoclonal Antibodies for Lymphoma 100

6.7 Immunotherapy for Kidney Cancer 100

6.7.1 Checkpoint Inhibitors for Kidney Cancer 100

6.7.2 Vaccines for Kidney Cancer 100

6.7.3 Adoptive Cell Therapy for Kidney Cancer 101

6.8 Dominance of MAbs and Vaccines in Cancer Clinical Research 101

6.9 Oncology Biologics Losing Patent Protection 101

7.0 Cancer Incidence and Mortality: An Overview 103

7.1 Global Economic Burden of Cancer 103

7.2 Global Burden of Cancer 104

7.3 Top Five Most Frequent Cancers, Globally 104

7.3.1 Global Prevalence of Colorectal, Breast and Lung Cancers 105

7.3.2 Percentage of Top Three Cancers Diagnosed Globally 105

7.3.2.1 Mortality due to Lung, Liver and Stomach Cancers 106

7.3.2.2 Percentage of Death due to Lung, Liver and Stomach Cancers 107

7.4 Cancer Deaths in Women 107

7.5 Prevalence and Mortality for Cancer Types Addressed by Immunotherapy 108
7.5.1 Breast Cancer 108
7.5.1.1 Worldwide Incidence of Breast Cancer and Mortality Rate by Geography 109
7.5.1.2 Female Breast Cancer Incidence in the U.S 109
7.5.1.3 Five Year Breast Cancer Survival Rates by Stage at Diagnosis and Age in the U.S 110
7.5.1.4 Breast Cancer Incidence in Canada 111
7.5.1.5 Breast Cancer Incidence and Mortality in Latin America 111
7.5.1.6 Breast Cancer Incidence and Mortality in Europe 112
7.5.1.7 Breast Cancer Incidence in Asia/Pacific 113
7.5.1.8 Breast Cancer Incidence by Country 114
7.5.2 Gastric Cancer (Stomach Cancer) 118
7.5.2.1 Incidence of Gastric Cancer in Top 15 Countries 118
7.5.3 Colorectal Cancer 119
7.5.3.1 Global Incidence of Colorectal Cancer 119
7.5.3.2 Worldwide Variations in the Incidence of Colorectal Cancer 120
7.5.3.3 Risk Factors for Colorectal Cancer 121
7.5.3.4 Colorectal Cancer Screening in the U.S 122
7.5.3.5 Colorectal Cancer Incidence Rates in the U.S. by State 122
7.5.3.6 Colorectal Cancer Mortality Rates (per 100,000) in the U.S. by States 123
7.5.4 Lung Cancer 124
7.5.4.1 Non-Small Cell Lung Cancer (NSCLC) 125
7.5.4.2 Global NSCLC Incidence 126
7.5.4.3 Lung Cancer in Americas by Gender 126
7.5.4.4 Tobacco Use and Lung Cancer 127
7.5.4.5 Current Therapeutic Options for Lung Cancer 128
7.5.5 Glioblastoma 130
7.5.5.1 Global Incidence of Glioblastoma 130
7.5.6 Kidney Cancer 131
7.5.6.1 Global Incidence of Kidney Cancer 132
7.5.7 Blood Cancer 133
7.5.7.1 Leukemia 133
7.5.7.2 Blood Cancer in the U.S 134
7.5.8 Cervical Cancer 136
7.5.8.1 Global Incidence of Cervical Cancer 136
7.5.9 Prostate Cancer 137
7.5.9.1 Global Incidence of Prostate Cancer 137
7.5.9.2 Prostate Cancer Incidence and Mortality by Geography 138
7.5.9.3 Prostrate Cancer in the U. S 139
7.5.10 Melanoma 140
7.5.10.1 Skin Cancer in the U. S 141
8.0 Market Analysis 142
8.1 Global Oncology Market 142
8.2 Top Ten Companies in Oncology Drug Sales 143
8.3 Top Five Oncology Drugs 144
8.4 Global Oncology Therapeutics Market by Cancer Type 145
9.0 Market for Cancer Immunotherapy 147
9.1 Key Drivers 147
9.2 Global Market for Cancer Immunotherapeutics 147
9.3 Global Market for Cancer Immunotherapy by Product Class 149
9.4 Global Market for Immunotherapy Drugs by Cancer Type 150
9.5 Global Market for Monoclonal Antibodies for Cancer by Type 151

Ordering

Order by Fax - using the form below

Order by Post - print the order form below and send to:

BioMarket Group
Björnnäsvägen 21
11419 STOCKHOLM
SWEDEN
Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to +46-8-56849191. If you have any questions please visit http://www.biomarketgroup.com/market-research-report/contacts/

Order Information
Please verify that the product information is correct:

Product Name: Global & USA Cancer Immunotherapy Market Analysis to 2020
Format: PDF
Price: 3800 USD (Single User License)

Delivery of hard copy or CD-ROM is subject to a Courier charge of 50 USD.
Delivery within Sweden is subject to VAT at 25%.

Contact Information
Please enter all the information below in BLOCK CAPITALS

Title: ________________________________
Name: ________________________________
Email Address:* ________________________
Job Title: ______________________________
Organization: _________________________

EU companies must supply: VAT / BTW / MOMS
MWST / IVA / FPA number:

Address: ______________________________
Zip Code: ______________________________
City: _________________________________
State: ________________________________
Country: ______________________________

Fax Order Form
To place an order via fax simply print this form, fill in the information below and fax the completed form to +46-8-56849191. If you have any questions please visit http://www.biomarketgroup.com/market-research-report/contacts/

Order Information
Please verify that the product information is correct:

Product Name: Global & USA Cancer Immunotherapy Market Analysis to 2020
Format: PDF
Price: 3800 USD (Single User License)

Payment Information
Please indicate the payment method you would like to use by selecting the appropriate box.

☐ Pay by credit card:
 ☐ American Express
 ☐ Master Card
 ☐ Visa
Cardholder Name: __________________________
Expiry Date (MM/YY): _______________________
Card Number: ______________________________
CVV Number: ______________________________

☐ Pay by check:
Please post the check, accompanied by this form, to:
BioMarket Group
Björnnäsvägen 21
11419 STOCKHOLM
SWEDEN

☐ Pay by wire transfer: Please transfer funds to:
Account number: 43521169
Swift code: HANDSESS
IBAN number: SE74 6000 0000 0000 4352 1169
Bank Address: Handelsbanken, Stockholm, Sweden

If you have a Marketing Code please enter it below:
Marketing Code: __________________________

Please supply purchase order number if needed:

* Please refrain from using free email accounts when ordering (e.g. Yahoo, Hotmail, Gmail)

Please note that by ordering from BioMarket Group you are agreeing to our Terms and Conditions at http://www.biomarketgroup.com
BioMarket Group - A Global Online Aggregator of Life Science Market Research

http://www.biomarketgroup.com/market-research-report/biomarket-group-full-terms-and-conditions/

Please fax this form to: +46-8-56849191